Top issues
Detected presence of known software supply chain attack artifacts.
Causes risk: supply chain attack artifacts
threats
Problem
Proprietary ReversingLabs malware detection algorithms have determined that the software package contains one or more malicious components. The detection was made by either a static byte signature, software component identity, or a complete file hash. This malware detection method is considered highly accurate, and can typically attribute malware to previously discovered software supply chain attacks. It is common to have multiple supply chain attack artifacts that relate to a single malware incident.Prevalence in NuGet community
0 packages
found in
Top 100
0 packages
found in
Top 1k
0 packages
found in
Top 10k
741 packages
in community
Next steps
If the software intent does not relate to malicious behavior, investigate the build and release environment for software supply chain compromise.
Avoid using this software package.
Detected presence of malicious files through analyst-vetted file reputation.
Causes risk: analyst-vetted malware found
threats
Problem
Threat researchers have manually inspected the software package and determined that it contains one or more malicious files. The detection was made by a hash-based file reputation lookup. This malware detection method is considered highly accurate, and can typically identify the malware family by name.Prevalence in NuGet community
0 packages
found in
Top 100
0 packages
found in
Top 1k
0 packages
found in
Top 10k
741 packages
in community
Next steps
Investigate the build and release environment for software supply chain compromise.
Avoid using this software package.
Detected presence of software components that were removed from the public package repository.
Causes risk: components prone to hijacking
hunting
Problem
Software developers use programming and design knowledge to build reusable software components. Software components are the basic building blocks for modern applications. Software consumed by an enterprise consists of hundreds, and sometimes even thousands of open source components. Software developers publish components they have authored to public repositories. Open source projects are the intellectual property of their respective authors. At any time, the authors may choose to completely remove the software component from a public repository. This often occurs when a software project reaches its end-of-life stage, or when the software authors lose interest in maintaining the project. This kind of removal frees up the software package name, its unique software identifier in the public repository, for other developers to use. However, new software project owners might have malicious intent. Threat actors are continuously monitoring popular package names in case their unique identifiers suddenly become available for hijacking. Once the software projects falls under new ownership, the new maintainers may opt to use the project popularity to spread malware to unsuspecting users.Prevalence in NuGet community
No prevalence information at this timeNext steps
Inspect behaviors exhibited by the detected software components.
If the software behaviors differ from expected, investigate the build and release environment for software supply chain compromise.
Revise the use of components that raise these alarms. If you can't deprecate those components, make sure that their versions are pinned.
Avoid using this software package until it is vetted as safe.
Problem
Software components contain executable code that performs actions implemented during its development. These actions are called behaviors. In the analysis report, behaviors are presented as human-readable descriptions that best match the underlying code intent. While most behaviors are benign, some are commonly abused by malicious software with the intent to cause harm. When a software package shares behavior traits with malicious software, it may become flagged by security solutions. Any detection from security solutions can cause friction for the end-users during software deployment. While the behavior is likely intended by the developer, there is a small chance this detection is true positive, and an early indication of a software supply chain attack.Prevalence in NuGet community
0 packages
found in
Top 100
0 packages
found in
Top 1k
4 packages
found in
Top 10k
1.09k packages
in community
Next steps
Investigate reported detections.
If the software intent does not relate to the reported behavior, investigate your build and release environment for software supply chain compromise.
You should delay the software release until the investigation is completed, or until the issue is risk accepted.
Consider rewriting the flagged code without using the marked behaviors.
Problem
Uniform Resource Locators (URLs) are structured addresses that point to locations and assets on the internet. URLs allow software developers to build complex applications that exchange data with servers that can be hosted in multiple geographical regions. URLs can commonly be found embedded in documentation, configuration files, source code and compiled binaries. Top-level domains (TLD) are a part of the Domain Name System (DNS), and are used to lookup an Internet Protocol (IP) address of a requested website. There are a few different types of top-level domains. Generic, sponsored and country-code TLDs are generally accessible to the public. Registrars that govern the assignment of domain names within the TLD may choose to sell specific domain names to an interested party. However, some registrars are known to have less strict rules for assigning domain names. Attackers often abuse gaps in governance and actively seek to register their malicious domains in such TLDs. This issue is raised for all domains registered within TLDs that harbor an excessive number of malicious sites. While the presence of suspicious TLDs does not imply malicious intent, all of its uses in a software package should be documented and approved.Prevalence in NuGet community
0 packages
found in
Top 100
2 packages
found in
Top 1k
15 packages
found in
Top 10k
69.32k packages
in community
Next steps
Investigate reported detections.
If the software should not include these network references, investigate your build and release environment for software supply chain compromise.
You should delay the software release until the investigation is completed, or until the issue is risk accepted.
Consider changing the top-level domain to avoid being flagged by security solutions.
Top behaviors
Retrieves the name of the user associated with the process.
search
Prevalence in NuGet community
Behavior often found in this community (Common)
0 packages
found in
Top 100
4 packages
found in
Top 1k
70 packages
found in
Top 10k
23.06k packages
in community
Executes a file.
execution
Prevalence in NuGet community
Behavior often found in this community (Common)
0 packages
found in
Top 100
12 packages
found in
Top 1k
98 packages
found in
Top 10k
39.01k packages
in community
Downloads a file.
network
Prevalence in NuGet community
Behavior often found in this community (Common)
0 packages
found in
Top 100
17 packages
found in
Top 1k
100 packages
found in
Top 10k
34.76k packages
in community
Contains URLs that use suspicious top-level domains.
network
Prevalence in NuGet community
Behavior uncommon for this community (Uncommon)
0 packages
found in
Top 100
2 packages
found in
Top 1k
17 packages
found in
Top 10k
69.79k packages
in community
Contains URLs that use non-standard ports.
network
Prevalence in NuGet community
Behavior uncommon for this community (Uncommon)
0 packages
found in
Top 100
2 packages
found in
Top 1k
32 packages
found in
Top 10k
21.21k packages
in community
Top vulnerabilities
No vulnerabilities found.